Definition
It is a function $f:(X,d_X)\to (Y,d_Y)$ between two metric spaces which satisfies
$$ d_Y(f(a),f(b))\leq K \cdot d_X(a,b) $$being $K>0$ constant.
Remark
Not every continuous function is Lipschitz continuous. For example $f(x)=\sqrt{x}$.
Related
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: